翻訳と辞書
Words near each other
・ Münsterlingen
・ Münsterländer
・ Münstermaifeld
・ Münstermann
・ Münsterplatz
・ Münsterplatz (Bern)
・ Münstersche Aa
・ Münsterschwarzach Abbey
・ Münstertal
・ Münstertal, Black Forest
・ Münster–Enschede railway
・ Münster–Hamm railway
・ Münster–Rheine railway
・ Müntefering
・ Müntschemier
Müntz–Szász theorem
・ Münzbach
・ Münzbach (river)
・ Münzenberg
・ Münzenberg Castle
・ Münzer
・ Münzesheim
・ Münzkabinett
・ Münzkirchen
・ Münzmeister
・ Münzregal
・ Münzwardein
・ Müqtədir
・ Mürdükler, Gerede
・ Mürefte


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Müntz–Szász theorem : ウィキペディア英語版
Müntz–Szász theorem
The Müntz–Szász theorem is a basic result of approximation theory, proved by Herman Müntz in 1914 and Otto Szász (1884–1952) in 1916. Roughly speaking, the theorem shows to what extent the Weierstrass theorem on polynomial approximation can have holes dug into it, by restricting certain coefficients in the polynomials to be zero. The form of the result had been conjectured by Sergei Bernstein before it was proved.
The theorem, in a special case, states that a necessary and sufficient condition for the monomials
:x^n\
to span a dense subset of the Banach space ''C''() of all continuous functions with complex number values on the closed interval () with ''a'' > 0, with the uniform norm, when the ''n'' form a subset ''S'' of the natural numbers, is that the sum
:Σ ''n''−1
of the reciprocals, taken over ''S'', should diverge. For an interval (''b'' ), the constant functions are necessary: assuming therefore that 0 is in ''S'', the condition on the other exponents is as before.
More generally, one can take exponents from any strictly increasing sequence of positive real numbers, and the same result holds. Szász showed that for complex number exponents, the same condition applied to the sequence of real parts.
There are also versions for the ''L''''p'' spaces.
==See also==

*Small set (combinatorics)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Müntz–Szász theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.